Laser Pulse Profile effects on target performance

D.Colombant, A.Schmitt, S.Obenschain Plasma Physics Division Naval Research Laboratory Washington, DC 20375

HAPL meeting, March 21-22 2006, Oak Ridge, TN

Outline

- * Flat-top vs. rising pulse
- * Hot electrons effects on gain
- * Comparison between 1/4 and 1/3 μ light

1/2 MJ target, KrF Old laser pulse (rising)

linear scale

semi-log scale

Old pulse

New flat-top pulse

Gain = 61.2 max. v = 4.04×10^7 cm/s max. I = 1.6×10^{15} W/cm² E = 480 kJ

Zooming now occurs without laser pulse power change

- So, what changes?
- Laser intensity on target since radius changes.
- Changes small enough that they don't affect target
- performance (no significant change in fuel adiabat).

Lower peak Intensity (1.6 vs. 2.5x10¹⁵ W/cm²) but

 $I > 9x10^{14}$ W/cm² for longer time (2.15 vs. 1.4 ns) so depending on the threshold and growth rates of LPI, this may or may not be an advantage but flat-top is easier to make.

However, max. I λ^2 drops from 1.56x10¹⁴ to 1x10¹⁴ W- μ^2 /cm²

Hot-electron deposition model

Simple model for hot-electron deposition

- <u>assume</u> a given fraction of energy deposited goes into hot electrons
- assume laser intensity above which hot electrons are generated
- <u>deposit hot electrons proportionally to density</u> (since ~ 40% of total mass is fuel, 40% of hot electrons generated are deposited into fuel)

Degradation of gain due to arbitrary fraction in hot-e⁻

Comparison between 1/4 and 1/3 micron targets (revisited)

Not very meaningful to make an exact comparison (same pellet, same laser pulse) because the 1/4 μ case will ignite and the 1/3 μ case will not.

Looking at various efficiencies:

- hydrodynamic eff. drops to 8.8% (from 10.1%)
- max. implosion velocity drops to 3.65x10⁷ cm/s (from 4.06x10⁷ cm/s)
- laser absorption eff. drops to 79% (from 90%) with 2-step zooming included
- $I\lambda^2$ increases to 1.89x10¹⁴ (from 1.56x10¹⁴)
- max. e-folds is 5.1 (vs. 5.4)

Comparison between 1/4 μ and 1/3 μ targets (continued)

Next best comparison: optimize laser pulse keeping the same pellet

Higher intensity (in order to get same pressure), so higher energy.

At "0" margin,

 $E_{inc} = 590 \text{ kJ}$ (vs. 480 kJ for same pellet, 1/4 μ) v max = 3.74 x 10⁷ cm/s (vs. 4.06x10⁷) Gain = 40.7 (vs. 58 for 1/4 μ) Max. no.of e-folds = 5.73 (vs. 5.41) I λ^2 = 2.22x10¹⁴ (vs. 1.56x10¹⁴ for rising pulse 1.x10¹⁴ for flat-top)

So, in every aspect, performance of 1/3 μ target is less.

Spike main effect may be due to gain recovery in the presence of a strong stabilizing foot.

Conclusion

- * Flat-top allows reduction in peak intensity.
- * Effects of fast electrons similar to previous studies.
- * 1/4 μ designs better at lower laser energies.